Logo Universitat Bremen

Zucker bringt viel Kohlendioxid ins tiefe Meer

18.03.2020
Coscinodiscus wailesii ist eine Mikroalge, die zur Familie der Kieselalgen gehört und die Algenblüten bilden und erhebliche Mengen an langkettigen Zuckern produzieren. Die Forschungsgruppe Marine Glycobiologie untersucht den Umsatz und die Rolle dieser Zu
Coscinodiscus wailesii ist eine Mikroalge, die zur Familie der Kieselalgen gehört, die Algenblüten bilden und erhebliche Mengen an langkettigen Zuckern produzieren. Die Forschungsgruppe Marine Glycobiologie untersucht den Umsatz und die Rolle dieser Zucker im Kohlenstoff-Kreislauf. Foto: Max-Planck-Institut für Marine Mikrobiologie/ C. Robb

Die Ozeane sind ein sehr wichtiger Kohlenstoffspeicher im globalen Erdsystem. Dennoch sind viele Prozesse in diesem Zusammenhang noch nicht geklärt. Forschende aus Bremen haben nun herausgefunden, dass Zucker dabei eine zentrale Rolle spielt. Gleichzeitig ist der süße Energieträger wichtig für das Ökosystem der Ozeane. Ihre Ergebnisse haben sie jetzt in PNAS veröffentlicht.

Im lichtdurchfluteten Oberflächenwasser der Ozeane wandeln photosynthetisch aktive, sehr kleine Pflanzen wie Kieselalgen (Diatomeen) mehr Kohlendioxid in Biomasse um als die tropischen Regenwälder. Dabei binden Kieselalgen ebenso wie Pflanzen an Land Kohlendioxid als polymerische Kohlenhydrate – also als langkettige Zucker. Allerdings war es bislang noch nicht gelungen zu klären, wie viel Kohlendioxid über diesen Prozess im Meer gebunden werden kann. 

Diese Wissenslücke interessierte die Mitglieder der Forschungsgruppe Marine Glykobiologie des Max-Planck-Instituts für Marine Mikrobiologie und des MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen. Um sie zu schließen, verwendeten die Wissenschaftlerinnen und Wissenschaftler unlängst entwickelte Enzyme, um aus den Bestandteilen von Mikroalgen wie Diatomeen die Konzentration des langkettigen Zuckers Laminarin zu messen, einem wichtigen Energieträger für diese Pflanzen.

Laminarin bindet Kohlendioxid

Anhand von Mikroalgen aus dem arktischen, atlantischen und pazifischen Ozean sowie aus der Nordsee konnten die Forschenden abschätzen, dass im Durchschnitt rund 26 Prozent dieser Algen-Biomasse aus dem Zucker Laminarin bestehen. „Aus dieser Menge lässt sich ableiten, dass durch Photosynthese in der Ozeanoberfläche jährlich rund zwölf Gigatonnen Kohlenstoff in Form von Laminarin in Algen produziert wird“, sagt Stefan Becker, Erstautor der Studie, die im März 2020 im Fachmagazin PNAS publiziert wurde. „Das ist eine sehr große Menge, wenn man bedenkt, dass die Menschheit dem Global Carbon Budget 2019 zufolge im Jahr 2018 rund 11,5 Gigatonnen Kohlenstoff freigesetzt hat.“ Allerdings werde nur ein kleiner Teil des Kohlenstoffs, der durch Laminarin gebunden wird, der Atmosphäre dauerhaft entzogen. Durch natürliche Prozesse wird ein Großteil im Folgenden wieder freigesetzt. Insgesamt haben die Ozeane im Jahr 2018 rund 2,6 Gigatonnen Kohlenstoff dauerhaft aufgenommen. „Unsere Erkenntnisse weisen aber darauf hin, dass Zucker wie Laminarin auch wichtig  für die dauerhafte Fixierung von Kohlenstoff im Meer sind“, sagt Becker.

So ist ein weiteres Ergebnis der Forschung, dass der Zucker rund die Hälfte des organischen Kohlenstoffs in sinkenden Diatomeen-Partikeln ausmacht. „Laminarin spielt dadurch eine wichtige Rolle beim Transport von Kohlenstoff von der Oberfläche des Ozeans in die Tiefe“, sagt Jan-Hendrik Hehemann, Leiter der Forschungsgruppe Marine Glykobiologie. „Ob Laminarin hier langfristig deponiert wird, ist nun eine wichtige weitergehende Fragestellung, die wir angehen werden.“

Schwankungen im Tagesverlauf

Weiterhin zeigen die Forschungsergebnisse die hohe Bedeutung von Laminarin für die Ökologie der Ozeane. Mikroalgen bilden die Basis der marinen Nahrungskette, die Konzentration des Zuckers ist in den kleinen Pflanzen aber nicht immer gleich. So stellten die Wissenschaftlerinnen und Wissenschaftler aus Bremen Schwankungen im Tagesverlauf fest. „Die Zucker-Konzentration in den Zellen der Algen steigt während des Tages stark an und sinkt über den Verlauf der Nacht, ähnlich wie die Jahreszeiten-abhängige Energie-Speicherung in stärkehaltigen Früchten oder Pflanzenwurzeln an Land“, sagt Hehemann. „Dies hat möglicherweise einen großen Einfluss auf das Fraßverhalten von Tieren im Meer. Denn die Tageszeit bestimmt, wie viel Zucker – und damit Energie – die Tiere beim Fressen aufnehmen.“

So erfüllt Laminarin wichtige ökologische Funktionen im Ozean und die großen Mengen des Zuckers, die im Ozean gefunden wurden, die hohe Bedeutung des Stoffes im globalen Kohlenstoffkreislauf unterstreichen.

 

Kontakt:

Dr. Jan-Hendrik Hehemann
MARUM-MPG Brückengruppe Marine Glykobiologie
Telefon: +49 421 218 65775
E-Mail: [Bitte aktivieren Sie Javascript]

 

Das MARUM gewinnt grundlegende wissenschaftliche Erkenntnisse über die Rolle des Ozeans und des Meeresbodens im gesamten Erdsystem. Die Dynamik des Ozeans und des Meeresbodens prägen durch Wechselwirkungen von geologischen, physikalischen, biologischen und chemischen Prozessen maßgeblich das gesamte Erdsystem. Dadurch werden das Klima sowie der globale Kohlenstoffkreislauf beeinflusst und es entstehen einzigartige biologische Systeme. Das MARUM steht für grundlagenorientierte und ergebnisoffene Forschung in Verantwortung vor der Gesellschaft, zum Wohl der Meeresumwelt und im Sinne der Nachhaltigkeitsziele der Vereinten Nationen. Es veröffentlicht seine qualitätsgeprüften, wissenschaftlichen Daten und macht diese frei zugänglich. Das MARUM informiert die Öffentlichkeit über neue Erkenntnisse der Meeresumwelt, und stellt im Dialog mit der Gesellschaft Handlungswissen bereit. Kooperationen des MARUM mit Unternehmen und Industriepartnern erfolgen unter Wahrung seines Ziels zum Schutz der Meeresumwelt.

Originalveröffentlichung:

Stefan Becker, Jan Tebben, Sarah Coffinet, Karen Wiltshire, Morten Hvitfeldt Iversen, Tilmann Harder, Kai-Uwe Hinrichs, Jan-Hendrik Hehemann: Laminarin is a major molecule in the marine carbon cycle. PNAS, March 2020. DOI: 10.1073/pnas.1917001117

 

Beteiligte Institutionen:

Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Deutschland

MARUM - Zentrum für Marine Umweltwissenschaften der Universität Bremen, Bremen, Deutschland

Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland