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I. ABSTRACT 

In recent years there has been a profound rise in appreciation of the importance that 
exposure of mantle material, and resultant reactions with seawater to produce serpentinite 
play as fundamental, and central Earth processes.  Serpentinization profoundly affects the 
rheology, gravity, and seismic structure of ocean crust formed by slow-spreading. Because 
magnetite is a product of serpentinization, hydration of olivine-rich rocks has a major effect 
on the magnetic signature of the ocean floor.  The geochemical consequences of 
serpentinization are also important to sea floor studies.  Serpentinite-hosted hydrothermal 
vents are common along slow and ultraslow spreading ridges.  These vents host unique 
microbiological ecosystems supported by hydrogen and methane released during peridotite-
seawater interactions.  Serpentinization is also common away from mid-ocean ridges, in 
fore-arc regions and at rifted continental margins.  Serpentine formation and dehydration 
plays a dominant role in subduction zone processes (element cycling, seismogenesis, 
mantle wedge dynamics), and the planetary water cycle.  

 
II. INTRODUCTION 

Exposure of mantle material and serpentinization of peridotite are integral parts of the 
architecture of slow- and ultra-slow spreading ridges.  Seawater reacts with peridotite as 
detachment faults unroof mantle material, and peridotite hosts black smoker type and cooler 
off-axis hydrothermal systems. Thus, understanding serpentinization processes is a 
fundamental part of understanding the exposure of mantle material and the evolution of 
oceanic lithosphere formed at slow spreading ridges. 

Serpentinization is a process that turns dry, dense, mechanical strong and weakly magnetic 
peridotite into a low-density, weak, highly magnetic rock with >10 wt.% H2O.  The chemical 
and physical changes of this transformation are so radical that the implications of 
serpentinization in all geotectonic settings where it occurs are extreme.  A number of recent 
microscopic (Dodony and Buseck, 2004), experimental (Normand et al., 2002; Allen and 
Seyfried, 2003), and theoretical (Wetzel and Shock, 2000; Sleep et al., 2004; Alt and 
Shanks, 2003) studies have addressed the geochemical and mineralogical transformations 
associated with serpentinization of abyssal peridotite (also see Evans, 2004; Früh-Green et 
al., 2004; Mével, 2003; Schroeder et al., 2002; Fryer, 2002; Andréani et al., 2007).  Despite 
the current interest in serpentinization, the underlying peridotite-water reactions remain 
poorly constrained.  Study of, and our resultant understanding of serpentinization has been 
fragmented and haphazard.  Here we emphasize the need for an integrated understanding 
of serpentinization processes in different tectonic/magmatic/hydrothermal settings in 
oceanic lithosphere.   
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Figure 1.Hypothetical model for evolution of 
hydrothermal systems in relation to 
detachment faulting. See text for details. 
McCaig et al., 2007. 

McCaig et al. (2007) present a hypothetical 
model (Figure 1) whereby hydrothermal 
activity could evolve as detachment faulting 
proceeds and foot- and hanging-walls age, 
from TAG-like venting in the young mafic 
hanging wall, to Rainbow-like high-T 
ultramafic hosted systems in the exposed 
footwall, to lower-T off-axis Lost City type 
activity.  This model is hypothetical and 
untested, but it illustrates some of the integral 
linkages between serpentinization and 
processes of crustal formation and evolution.  
Such a model provides a kind of “straw man” 
that could provide a basis for developing 
integrated models of serpentinization in 
relation to formation of ocean crust at slow 
and ultraslow spreading ridges.  Drill cores 
from serpentinized massifs in the oceans will 
allow us to approach the problem of 
serpentinization and its relationship to crustal 
formation and evolution in new ways, by 
selecting appropriate tectonic/magmatic/ 
hydrothermal settings.  Drill cores are critical, 
as the phase relations are minimally 
disturbed by later-stage reactions related to 
orogenesis or weathering that affect serpentinites exposed in mountain belts or at the 
seafloor. 

Ocean drilling provides an unparalleled opportunity to understand peridotite-water 
interaction and the highly unusual compositions of interacting fluids that have puzzled 
petrologists and geochemists for decades.  The fluids, rich in hydrogen and abiotic 
hydrocarbons (Proskurowski et al., 2008), support unique ecosystems and are believed to 
be excellent analogues of hydrothermal sites where life may have originated (Martin et al., 
2008).  Serpentinization provides a direct tie between mantle and microbes, as well as 
linking these with magmatism and tectonics, and is an ideal topic for transdisciplinary 
science in a new drilling program.   
 
This white paper addresses the need for systematic and comprehensive petrological, 
chemical, structural, and microbiological studies of drill core samples from deep sections of 
ultramafic basement from different (mid-ocean ridge, rifted continental margin, fore-arc) 
settings. These studies should be supplemented by drill hole observatory science and 
experimentation to determine rates of crucial reactions and examine the consequences of 
serpentinization for the deep biosphere.  
 

III. RELEVANCE  

1) Serpentinization Is An Integral Part Of Seafloor Spreading - Lithospheric heterogeneity is 
a basic consequence of the varying influences of magmatism and tectonics at slow and 
ultraslow spreading ridges.  This heterogeneity includes variable amounts of peridotite and 
olivine-rich gabbroic rocks, and variable influences on this peridotite from tectonics, 
magmatic intrusions, and fluids. The type and sequence of serpentinization reactions 
depend on the conditions of water-rock reactions, chiefly the protolith composition, 
temperature, and fluid flux.  ODP drill cores have shown that peridotite-seawater 
interactions take place under a wide range of temperature and redox conditions and involve 
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fluids with highly variable pH and silica activities (e.g., Bach et al., 2004).  It has recently 
become apparent that the protolith composition, the presence or absence of magmatic 
intrusions, and structural features (e.g., detachment faults, fault gouges, trapped melt) 
contribute to the large diversity in serpentinization and related processes (rodingitization, 
steatitization) (Boschi et al., 2006; Frost et al., 2008; Bach and Klein 2009).  
Serpentinization leads to dramatic changes in the rheology and magnetic properties of 
lithosphere (Dyment et al., 1997; Escartin et al., 1997; Schroeder et al., 2002). Thus, 
serpentinization is an integral part of formation of heterogeneous ocean crust and reflects 
the variable interplay of magmatism, tectonics, and fluid flow. Drilling of serpentinite is 
needed to further understand serpentinization processes resulting from these variable 
influences, as outlined below, but the understanding gained by study of serpentinization will 
in turn enable further insights into interactions among magmatic, tectonic, and hydrothermal 
processes during formation of heterogeneous oceanic crust. 

2) Seawater-Ocean Lithosphere Chemical Exchange - Serpentinization of peridotite results 
in significant uptake of H2O, C, S, B, Cl, and LREE, and generation of hydrogen and 
methane.  However, reaction pathways and rates of serpentinization are incompletely 
understood and do not allow us to predict hydrogen generation or CO2 uptake related to 
serpentinization at the scale of ridge segments let alone at a global scale. The 
consequences of serpentinization of roughly 25% of seafloor formed at slow spreading 
ridges (Cannat et al., 2005) for global exchange budgets are also poorly known, although 
serpentinization is likely to change estimations of fluxes significantly for some elements (B, 
Sr, Li, Os, etc.), and may be equivalent to seawater exchange with mafic crust for other 
elements (e.g., S, C). Additionally, new insights are critically needed to assess the potential 
of serpentinization systems for carbon capture and storage, which may be considerable 
(Kelemen and Matter, 2008).  

3) Deformation and Magmatic-Tectonic-Hydrothermal Linkages – Magmatism and melt 
impregnation exert important effects on deformation, fluid flow and water-rock interactions, 
with important feedbacks among these processes. Structural models of detachment faulting 
(Tucholke et al., 1998; Escartin et al., 2003; Ildefonse et al, 2007) highlight the crucial role 
of weakening the shear strength in the lithosphere by the formation of serpentine and talc.  
Interesting feedback mechanisms between hydration-promoted melting, hydration, 
detachment faulting, and mass transfers were recently proposed by Jöns et al. (2009).  
They showed that melt impregnations play a crucial role in the development of detachment 
faults.  Magmatic components in mantle sections change the phase relations such that 
hydration can take place at temperatures >200°C higher than where unimpregnated mantle 
rocks would hydrate.  The hydrated talc-chlorite-tremolite bearing rocks are mechanically 
much weaker (e.g., Escartin et al., 1997; 2008) than the surrounding mantle rock, and 
accommodate all the strain at temperatures higher that where strain localization usually 
takes place (greenschist facies conditions).  Deformation leads to further hydration, 
promoting further weakening the rock. These feedbacks help explain many geochemical, 
mineralogical, and structural features of detachment fault rocks.  Fluid flow is channelized in 
these faults and high fluid fluxes can lead to metasomatic mass transfers and hydrothermal 
deposit formation (McCaig et al., 2007). This mechanism can explain why seafloor 
hydrothermal systems commonly sit near the termination of detachment faults (Escartin et 
al., 2008).  Other evidence from fault rocks, however, suggests low water/rock ratios 
(Boschi et al., 2006, 2008), pointing out the need for further work to understand the role of 
detachment faulting in fluid flow, and the relation of faults to serpentinization of host rocks.    

4) Ultramafic-Hosted Black Smoker Type Hydrothermal Systems – Submarine hydrothermal 
systems hosted in mafic crust have been studied for nearly 40 years and are reasonably 
well-known. In contrast, ultramafic-hosted high temperature hydrothermal systems, where 
black smoker hydrothermal vents and/or sulfide mineralization co-occur with mantle 
peridotites that are exposed by detachment faulting are poorly understood. In the Atlantic, 
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~350-365˚C black smoker vents and sulfide deposits occur at Rainbow (36˚14’N), 
Logatchev (14˚45’N), and Nibelungen (18˚S); and sulfide mineralization has been observed 
in serpentinite talus at Saldanha and Ashadze (36˚34’N and 13˚N) (Douville et al., 2002; 
Dias and Barriga, 2006; Schmidt et al., 2007; Melchert et al., 2008; Mozgova et al., 2008; 
Petersen et al., 2009). Sulfide deposits and hydrothermal plumes indicate that such activity 
is common on the SW Indian and Gakkel Ridges (Baker et al., 2004; Edmonds et al., 2003).  
Although hosted in peridotite, the high temperatures and flow rates of these systems require 
a magmatic heat source, and fluid compositions indicate influences from mafic as well as 
ultramafic rocks (Douville et al., 2002; German and Lin, 2004; Seyfried et al., 2004, 2009; 
Schmidt et al., 2007). Reactions in the subsurface have thus far been inferred from 
measured vent fluid chemistry, experiments and modeling, the true nature of subsurface 
mineralogy, chemical reactions, and flow pathways that support these hydrothermal 
systems is unknown. In particular, the relationship of mafic intrusions to peridotite and 
serpentinization reactions in the “root zone” or deep  “reaction zone” that support the 
observed surface expressions has never been observed. Drilling is key to understanding 
reactions at depth, the heat source, and for establishing linkages between serpentinization, 
hydrothermal activity, magmatism and tectonics at the slow-spreading end-member. 

5) Hydrogen Generation – A trademark of peridotite-seawater interactions is the production 
of large amounts of hydrogen and methane. Understanding the phase relations and their 
dependence on rock composition, water-to-rock ratios, and temperature is of paramount 
importance in unraveling the enigma of strongly reduced conditions in serpentinization.  This 
process is commonly often considered a single-step reaction of olivine to serpentine, 
brucite, and magnetite:  

10 Mg1.8Fe0.2SiO4 + 13 H2O  5Mg3Si2O5(OH)4 + 3 Mg(OH)2 + 2/3 Fe3O4 + 2/3 H2  

This reaction is not useful in describing hydrogen production, because Fe is not allowed to 
partition into any secondary phase but magnetite.  More recently, the role of silica activities 
and Fe-Mg exchange equilibria in controlling hydrogen production during serpentinization 
has been highlighted (Allen and Seyfried, 2003; Bach et al., 2006; Evans, 2008; Frost and 
Beard, 2007; McCollom and Bach, 2009; Sleep et al., 2004; Klein et al., in press).  It was 
shown that olivine is stable at T>350°C in the presence of an aqueous fluid.  Cooling the 
system the system to lower T, leads to a cascade of chemical events associated with 
serpentinization, including an increase in the Mg# of the serpentine minerals, the 
destabilization of most ferrous iron silicates, the formation of unusual minerals in the 
serpentinite proper (e.g., metallic Ni-Fe alloys), and metasomatic alteration of adjacent 
rocks (rodingitization).  Hydrogen fugacities during this stage are so high that CO2 in the 
fluid is partly reduced to methane and other hydrocarbons.  Serpentinization causes 
hydrogen and methane fluxes into the oceans that are an order of magnitude greater than 
the fluxes associated with magmatic accretion of the oceanic crust (Cannat et al., in press).   

6) Hydrogen Ecology - Serpentinite-hosted vent fields are common along slow and ultraslow 
spreading ridges (Charlou and Donval, 1993; Bach et al., 2002; Baker et al., 2004; 
Edmonds et al., 2003). Hydrogen and methane released during peridotite-seawater 
interactions (Kelley et al., 2001; 2005; Charlou et al., 2002) support microbial communities 
that form the base of the food web in unique ecosystems associated with serpentinite-
hosted hydrothermal systems and allowing microbial activity in hydrothermal plumes to 
thrive (Schrenk et al., 2004; O'Brien et al., 1998; Mottl et al., 2003; Kelley et al., 2005).  
Because hydrogen drives methanogenesis, organosynthesis, and microbial metabolism in 
serpentinite-hosted hydrothermal systems (Kelley et al., 2005; Proskurowski et al., 2008; 
Schrenk et al., 2004) and in ultramafic basement rocks (Alt and Shanks, 1998; Alt and 
Shanks, 2003; Alt et al., 2007; Delacour et al., 2008a; Delacour et al., 2008b), a detailed 
understanding of its production is essential.  
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7) Continental Rifted Margins:  At volcanic rifted margins (e.g. Iberia) rifting can expose tens 
of thousands of square kilometers of peridotite at the surface (Whitmarsh et al., 1997). 
Long-lived serpentinite-hosted hydrothermal systems have been identified within the 
exposed peridotites (Beard and Hopkinson, 2000). Serpentinization of such large volumes 
of mantle rocks should produce discernable excursions in ocean geochemistry. Additionally, 
it has been proposed that serpentinization of the exposed mantle can promote expansion of 
the ocean basin in a manner analogous to MOR magmatism and even yield a magnetic 
signature that can be interpreted as a record of the expansion. One issue that arose with 
Iberian margin serpentinites in particular concerns the carrier of the magnetic signal. It turns 
out that minerals other than magnetite, including iron-nickel sulfides and metal phases such 
as awaruite, may make a large contribution to the magnetic signature (Zhao et al., 2001). 
Thus the nature and products of serpentinization reactions are important in interpreting the 
magnetic record and, particularly, the timing of ocean expansion. 

8) Subduction Zones:  Serpentinization of the mantle wedge is an integral part of cycling of 
elements, particularly volatiles, in subduction zones. The mantle wedge is serpentinized and 
metasomatized by fluids derived from dewatering of subducting sediments and dehydration 
of sediment and basement (Fryer and Salisbury, 2002; Mottl et al 2003; Alt and Shanks, 
2006; Savov et al.,2005). These fluids can vent at the seafloor along with serpentinite 
protusions, as in the Marianas, where they support communities of bacteria and archaea 
(Mottl et al., 2003; Takai et al., 2004). At greater depths, metasomatized serpentinite in the 
mantle wedge can be dragged downward to dehydrate and metasomatize the deeper 
mantle wedge and affect arc volcanism. Because of the high P-T stability of serpentine, 
subducted serpentinite can carry volatiles to great depths beneath arcs, and even return 
volatiles to the mantle (Ulmer and Trommsdorff, 1995; Kerrick, 2002; Rüpke et al., 2004). 
Geophysical data indicate that suboceanic mantle is serpentinized as the lithosphere flexes 
outboard of subduction zones, suggesting recycling of additional H2O and other elements 
added to the lithosphere far from mid-oceanic ridges (Ranero and Salleres, 2004).  

9) Planetary Serpentinization: Much debated in astrobiology and space science is the 
significance of serpentinization processes on extraterrestrial bodies for their atmosphere 
and putative biosphere (e.g., Schulte and Shock, 2004; Schulte et al., 2006; Sleep et al., 
2006; Atreya et al. 2007). Infrared absorption spectra of Ceres, a dwarf-planet in the 
asteroid belt, are indicative of brucite, serpentine and Mg-carbonates (Miliken & Rivkin, 
2009), a mineralogy consistent with terrestrial serpentinites. Methane formed via Sabatier 
reactions during serpentinization could have and/or may currently contribute to the 
atmospheric methane observed on Mars and Europa (e.g., Atreya et al. 2007). These 
results indicate that hydration of ultramafic rocks may profoundly impact surface 
environments on other planets in our solar system and beyond. Drilling active 
serpentinization systems on slow-spread ridges, continental margins and fore-arc settings 
will lead increase our understanding of serpentinization processes and facilitate an 
evaluation of analogue processes on Mars, Europa, Ceres and elsewhere. 

 

IV. NEED FOR FUTURE DRILLING 

The prominent rheological, geochemical, and microbiological role in different geotectonic 
settings make serpentinization a key process in the System Earth.  The following selected 
(unprioritized) examples address how future ocean drilling could crucially facilitate further 
understanding of serpentinization and its role in Earth processes. 

* Examining the role of serpentinization in the formation and evolution of mid-ocean ridge 
detachment faults and non-volcanic rifted margins is of key importance in understanding 
slow-spreading divergent plate boundaries. Drilling is necessary to sample faults and 
associated host rocks, to understand the development of detachment faults and exposure of 
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core complexes, and in particular how hydrothermal systems and seawater influence and 
their relative roles evolve in relation to tectonics and magmatism. Comprehensive drilling, 
using conventional and seabed drill rig techniques, are required to achieve this goal.  

* Drilling deeply into systems influenced by active serpentinization (e.g., Lost City, Rainbow 
or Logatchev?) from serpentinite into unaltered or slightly altered peridotite will allow 
examination of the serpentinization reaction front. Drilling is essential in unraveling the 
reaction pathways leading to the high hydrogen and hydrocarbon fluxes at the seafloor. 
Only fresh drill cores carry the required information, since dredged materials suffer from 
severe and irreversible seafloor weathering overprints. 

* Ultramafic–hosted hydrothermal systems are unique seafloor habitats fueled by abiotic 
hydrogen and hydrocarbons produced in water-rock reactions.  Drilling is needed to 
understand the subsurface structure of these systems and test models for subsurface 
reactions based on vent fluids and geochemical modeling. Drill cores will enable 
examination of questions concerning flow pathways, shallow stockwork zones, deep 
reaction zones, gabbro-peridotite relationships and the relative roles of gabbro vs peridotite 
in setting vent fluid chemistry.  

* Serpentinite in subduction zone controls tectonics and geochemical cycling in one of the 
most prominent process zones on Earth. Samples of serpentinized mantle wedge are 
critical in assessing reaction pathways and fluid evolution during interactions of fluids 
expelled from the subducting slab and the overlying mantle. The “Mantle Wedge” may be 
too deep everywhere to reach by drilling, so sampling of this material as deposited at 
serpentinite seamounts, such as in the Marianas, may be the best approach. In addition, 
there are other, tectonically uplifted areas where oceanic mantle wedge material is 
accessible by drilling (e.g., Mariana and Tonga fore arc).  

* The production of bore holes by ocean drilling, in particular in areas of active 
serpentinization, present opportunities for long-term active study and experimentation in the 
ocean crust.  Geochemists, hydrogeologists, and microbiologists have been developing the 
means with which to use subseafloor borehole observatories (CORKs) for a variety of 
purposes – for example, to retrieve representative samples of crustal fluids, for conducting 
in-situ experiments under native crustal conditions, or for conducting active perturbation/ 
tracer experiments in order to learn about how fluid flows in the crust.  CORKed 
observatories have not yet been used for study of serpentinization, but could provide 
exciting opportunities to directly test hypotheses, for example about reaction pathways and 
resultant fluid chemistries and microbial communities. CORK observatories enable repeated 
sampling, experiments and analysis post-drilling, after the perturbation due to emplacement 
has dissipated.  Rock core that can be recovered via drilling is always an incomplete record 
of the target crustal section; CORKed observatories enable extension of the necessarily 
limited recovered section to the broader crustal context.  The state-of-the-art in use of 
CORKed observatories, and in particular recent developments as applied to coupled 
geochemical/biological experiments is discussed in a recent paper (Orcutt et al., 2009b) 
another white paper (Orcutt et al., 2009a).  These recent developments make this an ideal 
time to develop plans for drill core recovery in actively serpentinizing systems coupled with 
CORKed observatories for long-term study of these exciting systems.   
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